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Introduction

What types of environmental flows do we hope to analyze with this method?
e Highly non-linear, multi-scale flows in oceans, lakes, and rivers
e Flows that are well approximated by the variable density incompressible Navier-Stokes equations

e Examples: internal waves, coastal plumes, density currents in lakes, flows in branched estuarine
slough networks, flows past highly complex topography

What are the issues involved?
e Complex and often sparse geometries
e Large ranges in spatial and temporal scales

e Moving fronts and highly complex mixing zones

What do we hope to provide with such a tool?
e An enhanced ability to interpret and extend the results of field and laboratory studies

e A predictive tool for both engineering and science



Variable Density Incompressible Navier-Stokes Equations

e Momentum balance

Divergence free constraint

Density conservation

pt +u-Vp=20

Passive scalar transport

ct +u-Ve=V-(kcVe)+ He

Note that we do not employ Boussinesq or hydrostatic approximations.



Solution Strategy: Temporal Discretization

We build on a classic second-order accurate projection method (Bell, Colella, Glaz,
JCP 1989). We split the momentum equations into three pieces:

e Hyperbolic: u; + (4 - V)u = H
where we exactly enforce a divergence free state for the advective velocities, and compute the

advective term explicitly
e Parabolic: wy = vAuU+ S

which we solve implicitly for a predictor velocity
e Elliptic: V- 2Vp =V (~(a- V)i +vAQ)

which we solve implicitly for pressure, and subsequently correct the predictor velocity

To update the scalar equations we do similar hyperbolic and parabolic

decompositions.



Solution Strategy: Spatial Discretization Using Embedded Boundaries (EB)

For the bulk of the flow, O(n?) cells in 3D, we compute on a regular Cartesian grid.
We use an embedded boundary description for the O(n?) (in 3D) control-volumes
that intersect the boundary.

Advantages of underlying rectangular grid:

e Grid generation is tractable, with a straightforward coupling to block-structured
adaptive mesh refinement (AMR)

e Good discretization technology, e.g. well-understood consistency theory for finite
differences, geometric multigrid for solvers.



EB Finite-Volume Discretization Concepts
Consider hyperbolic and elliptic conservation laws:
9U +V-FU)=S and V.-V¢=V-F=H
Primary dependent variables approximate values at centers of Cartesian cells
Divergence theorem over each control volume leads to a “finite volume” approximation for

V - F (fluxes are at centroids):
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Away from boundaries, our method reduces to a standard conservative finite difference method

Given k, as, ap, and 7ig on a fine grid, we can compute these on coarser grids without

reference to the original geometry.
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EB Finite-Volume Discretization Concepts, cont.

For the case of an elliptic conservation law, we need to compute V¢ at face

centroids. Here is how we do this in 2D:

e First we compute face-centered gradients using centered differences
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e In 3D we use a bilinear interpolation based on four face-centered gradients (fluxes)



Why are Embedded Boundaries Important?

To accurately discretize our conservation laws all we need are the following

quantities: volume fractions, area fractions, centroids, boundary areas, and boundary
normals.

Above are two approximations to a circle: stair-step on left, and EB on right.

Stair-Step | Embedded Boundary
Area Error O(h) O(h?)
Perimeter Error O(1) O(h?)
Boundary Normal Errors O(1) O(h?)




Block-Structured Adaptive Mesh Refinement

In adaptive methods, one adjusts the computational effort locally to maintain a uniform level of

accuracy throughout the problem domain.

e Refined regions are organized into rectangular patches. Refinement is possible in both space

and time.

e AMR allows the simulation of a range of spatial and temporal scales. Capturing these ranges is
critical to accurately modeling multi-scale transport complexities such as boundaries, fronts,

and mixing zones that exist in natural environments.

e \We maintain accuracy and strict conservation with embedded boundaries and AMR
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i Finite-Volume Discretization Concepts

e Two requirements are necessary to maintain conservation and second-order accuracy with
AMR:

1) Match fluxes conservatively at coarse fine interfaces (this leads to a refluxing step for
the coarse levels)

2) Use quadratic interpolation to provide ghost cell values for points in the stencil
extending outside of the grids at that level
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Grid Generation for Embedded Boundaries

e Three example irregular cells are shown below. Green curves indicate the intersection of the
exact boundary with a Cartesian cell. We approximate face intersections using quadratic
interpolants.

e EB’s are “water tight” by construction, i.e. if two control-volumes share a face, they both have
the same area fraction for that face.

e Unlike typical discretization methods, the EB control volumes naturally fit within easily
parallelized disjoint block data structures.

e Permits dynamic coarsening and refinement of highly complex geometry as a simulation
progresses.
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EB Coarsening

White regions represent individual control volumes. Green is the exact geometry.

13



EB Coarsening

Note: We have some cells with more than one control volume per cell.
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EB Grid Generation Examples

e Embedded boundary description of San Francisco Bay (using USGS DEM data)
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EB Grid Generation Examples

e Embedded boundary description of San Francisco Bay (using USGS DEM data)
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EB AMR Grid Generation Examples
e San Francisco Bay with AMR (using USGS DEM data)
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Results: 2D Convergence Study
e Flow is inside a 1 m square tank, with a cylinder of diameter 0.1m at (0.15,0.5)

e The initial velocity field is the divergence free part of a rigid rotation (flow is

counter-clockwise)

Above is a plot of the initial conditions. The colors indicate vertical velocity (red
is up, blue is down)

e The Re = 100 for this problem.
e We initialize our density field as p = 1000 + 30y (linear, with heavy on top)
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Results: 2D Convergence Study

e For the convergence study, we solve this problem on 3 different grid hierarchies. We discretize
the coarsest level of each hierarchy with 8x8, 16x16, and 32x32 cells.

e For each run we use 4 levels of AMR with a refinement ratio of 4 between levels

e In the table we present norms of the solution error, and our convergence rate.
Base Grids 8-16 Rate 16-32

L1 Norm of V Velocity Error || 5.73e-3 | 2.02 | 1.42e-3
Lo Norm of V Velocity Error || 7.68e-3 | 2.01 | 1.91e-3
L1 Norm of Scalar Error 1.24e-2 | 2.04 | 3.03e-3
Lo Norm of Scalar Error 1.64e-2 | 1.98 | 4.16e-3
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Results: 3D Convergence Study

e Below is a 3D single level convergence study for a constant density, Re = 100, rotational flow

past a complex geometry:

Base Grids 16-32 Rate 32-64

L1 Norm of U Velocity Error 1.69e-2 | 2.32 | 3.39e-3
L2 Norm of U Velocity Error 5.28e-2 | 1.76 | 1.55e-2
L1 Norm of W Velocity Error || 1.48e-2 | 2.29 | 3.03e-3
Lo Norm of W Velocity Error || 4.69e-2 | 1.83 | 1.32e-2
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Results: Breaking Internal Waves on a Slope

Flow is inside a 0.5m tall, by 3m wide tank, with an 8:1 slope starting 1m from
the left side

Below left is the initial density distribution (blue is light fluid, red is heavy fluid),
below right is the initial conditions for a passive scalar

Density ratio of light fluid to heavy fluid is 1000/1030, and our pycnocline is a
step-function. The pycnocline is perturbed on the left side of the tank.

Thanks to Prof. Fringer for this test problem
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Breaking Internal Wave on a Slope (Density left, Scalar right)
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Results: Breaking Internal Waves on a Slope

e Since most pycnoclines are not step-functions, what happens if our initial

pycnocline is smoothed over 20 percent of the depth?
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Results: Simulation of flow past a cylinder with AMR

e Flow is inside a 1m square tank, with a cylinder of diameter 0.1m placed at
(0.25,0.25)

e We initialize the flow with a vortex patch in the center of the domain, see below
left. The Re = 100 for this flow. We initialize a passive scalar, see below right.

e We discretize the domain with a base grid of 64x64 cells, and refine 2 additional
levels to track vorticity
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Simulation of flow past a cylinder with AMR

e Vorticity (which we track with AMR):
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Results: Lock-Exchange with AMR

e Flow is inside a 0.5m tall, by 3m wide tank.

e On the left side of the tank we start with light water, on the right is heavy
water. The density ratio of light fluid to heavy fluid is 1000/1030.

e On the following lock-exchange slides, the lower figure is a zoom in on the
center region of the tank.
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?

Answer: We can add computational effort only where we need it!
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Results: Simulation of flow past a sphere with AMR

e Flow is inside a 1m cubed tank, with a sphere of diameter 0.1m placed at
(0.25,0.25,0.5)

e We initialize the flow with a vortex patch in the center of the domain, see below
left for z-vorticity iso-surfaces. The Re = 100 for this flow. We initialize a

passive scalar, see below right for an iso-surface.
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Conclusions and Future Work

e \We now have a second-order accurate incompressible Navier-Stokes code
that has been validated in 2D and 3D.

e Our AMR version is showing reasonable results and is under review to
ensure second-order accuracy.

e Future Work:
— Free Surface Tracking
— LES Turbulence Closure
— Field Scale Applications
— Fourth-Order Accuracy (see my upcoming JCP paper with P. Colella).
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